jueves, 11 de julio de 2013

EL UNIVERSO - temas varios

ALMA capta la imagen de un útero estelar que gesta a una estrella gigante

Cuando nazca, el cuerpo celeste tendrá una masa 100 veces superior a la de nuestro Sol


Los telescopio de ALMA han captado la mejor imagen conseguida hasta la fecha de un gigantesca estrella en pleno proceso de formación. El cuerpo celeste se encuentra en el interior de una nube oscura, que funciona como útero, donde devora con avidez el material que cae hacia el interior. Finalmente, este material colapsará, formando una estrella joven de más de 100 veces la masa de nuestro sol.




ALMA observa el nacimiento de una estrella gigantesca. Fuente: ESO.
ALMA observa el nacimiento de una estrella gigantesca. Fuente: ESO.
Nuevas observaciones llevadas a cabo con el conjunto ALMA (Atacama Large Millimeter/submillimeter Array) han proporcionado a los astrónomos la mejor visión conseguida hasta ahora de una gigantesca estrella en pleno proceso de formación en el interior de una nube oscura. 

Se ha descubierto un útero estelar con más de 500 veces la masa del Sol — el más grande de los encontrados hasta el momento en la Vía Láctea — que aún está creciendo. La estrella embrionaria del interior de la nube devora con avidez el material que cae hacia el interior. Se cree que la nube dará a luz a una estrella muy brillante con más de 100 veces la masa del Sol. 

Las estrellas más masivas y brillantes de la galaxia se forman en nubes frías y oscuras, pero el proceso no solo está envuelto en polvo, sino también en un halo de misterio. Un equipo internacional de astrónomos ha utilizado ALMA para obtener una ecografía prenatal en el rango de las microondas con el fin de conseguir una imagen más clara de la formación de este tipo de gigantesca estrella situada a unos 11.000 años luz de distancia, en una nube conocida como la Spitzer Dark Cloud (SDC) 335.579-0.292. 

Hay dos teorías sobre la formación de las estrellas más masivas. Una de ellas sugiere que la oscura nube parental se fragmenta, creando varios núcleos pequeños que colapsan por sí mismos y, eventualmente, forman estrellas. 

La otra teoría es más dramática: toda la nube empieza a colapsar hacia el interior, con material que se precipita hacia el centro de la nube formando una o varias bestias estelares masivas. Un equipo liderado por Nicolas Peretto, del CEA/AIM Paris-Saclay (Francia) y la Universidad de Cardiff (Reino Unido), llegó a la conclusión de que ALMA era la herramienta perfecta para ayudarles a descubrir qué estaba ocurriendo en realidad. 

Gracias a observaciones llevadas a cabo con el telescopio espacial Spitzer de la NASA y el telescopio espacial Herschel de la ESA, SDC335.579-0.292 se reveló, primero, como un impresionante entorno oscuro de densos filamentos de gas y polvo. 

Primera ‘ecografía’ profunda 

Ahora, el equipo ha utilizado la sensibilidad única de ALMA para ver en detalle tanto la cantidad de polvo como el movimiento del gas que se desplaza hacia el interior de la nube oscura — y han descubierto un verdadero gigante. 

“Las extraordinarias observaciones de ALMA nos permitieron obtener la primera visión realmente profunda de lo que estaba ocurriendo en el interior de esa nube”, declara Peretto en un comunicado de ESO. 

“Queríamos ver cómo se forman y cómo crecen estas estrellas gigantescas, ¡y sin duda lo hemos conseguido! Una de las fuentes que hemos encontrado es inmensa — el núcleo protoestelar más grande de todos los que se han localizado hasta ahora en la Vía Láctea". 

Este núcleo — el útero que alberga al embrión de estrella — tiene unas 500 veces la masa del Sol girando en su interior. Y las observaciones de ALMA muestran que hay mucho más material fluyendo todavía hacia el interior e incrementando aún más la masa. Finalmente, este material colapsará, formando una estrella joven de más de 100 veces la masa de nuestra estrella anfitriona — una bestia muy poco común. 

“Aunque ya creíamos que la región era una buena candidata para ser una nube de formación de estrellas masivas, no esperábamos encontrar ese impresionante embrión estelar tan masivo en su centro”, afirma Peretto. “Se espera que este objeto acabe formando una estrella 100 veces más masiva que el Sol. ¡Solo una de cada diez mil de todas la estrellas de la Vía Láctea alcanzan tal cantidad de masa!”. 


Un parto rápido y una infancia muy corta 

"Estas estrellas no son solo poco comunes, sino que su nacimiento es extremadamente rápido y su infancia muy corta, con lo que encontrar un objeto tan masivo en una etapa tan temprana de su evolución es un resultado espectacular", añade un miembro del equipo, Gary Fuller, de la Universidad de Manchester (Reino Unido). 

Otro miembro del equipo, Ana Duarte Cabral, del Laboratorio de Astrofísica de Bordeaux (Francia), insiste en que "las observaciones de ALMA revelan los espectaculares detalles de los movimientos de la red de filamentos de polvo y gas, y muestran que una enorme cantidad de gas está fluyendo hacia una compacta zona central”. 

Esto apoya con fuerza la teoría del colapso global para la formación de estrella masivas, más que la de la fragmentación. 

Estas observaciones formaban parte de la etapa de Ciencia Temprana (Early Science) de ALMA, y han utilizado tan solo una cuarta parte del conjunto total de antenas. 

“Conseguimos estas observaciones tan detalladas utilizando solo una parte del potencial total de ALMA”, concluye Peretto. “ALMA va a revolucionar nuestro conocimiento de la formación estelar, solucionando algunos problemas actuales, y sin duda dando lugar a otros nuevos”.

------------------------------------------------------------------------------------------------------

2 - El catálogo Alhambra desvela los secretos de la evolución del cosmos

Investigadores del Instituto de Astrofísica de Andalucía encabezan un archivo de datos de cien mil galaxias y veinte mil estrellas


Investigadores del Instituto de Astrofísica de Andalucía-CSIC han liderado el mejor catálogo desarrollado hasta ahora sobre la evolución del cosmos. El proyecto ALHAMBRA incluye datos de cien mil galaxias, veinte mil estrellas y mil posibles núcleos activos de galaxias distribuidas en ocho regiones del cielo, que permitirán estudiar diez mil millones de años de historia del universo con una gran fiabilidad estadística.




Imagen de ALHAMBRA. Fuente: IAA-CSIC.
Imagen de ALHAMBRA. Fuente: IAA-CSIC.
Acaba de hacerse pública la primera muestra de datos del ALHAMBRA survey, el mejor catálogo desarrollado hasta la fecha para el estudio de la evolución del cosmos. 

Un artículo, encabezado por los investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) Alberto Molino y Txitxo Benítez, pone a disposición de la comunidad científica los datos de un total de cien mil galaxias, veinte mil estrellas del halo galáctico y mil posibles núcleos activos de galaxias distribuidas en ocho regiones del cielo, que permitirán estudiar la evolución del universo durante los últimos diez mil millones de años con una fiabilidad estadística sin precedentes. 

"La gran fortaleza de ALHAMBRA, que lo convierte en un sondeo a día de hoy imbatible, reside en el estudio en detalle de ocho regiones profundas del cielo. Esto nos permite asegurarnos de que disponemos de una muestra representativa y de que cualquier conclusión que extraigamos de ella puede aplicarse a todo el universo", destaca Alberto Molino, investigador del IAA que ha liderado esta primera publicación de datos, en la nota de prensa del IAA. 

En la actualidad, los astrónomos disponen de sondeos de gran área y poca profundidad o de muestras muy profundas del cielo pero que solo contemplan una única y reducida región, lo que no tiene en cuenta lo que se conoce como varianza cósmica, derivada del hecho de que el universo presenta regiones más y menos densas de galaxias. 

"En este sentido, el proyecto ALHAMBRA ha permitido confirmar que el muestreo COSMOS, uno de los más empleados en estudios cosmológicos, no resulta representativo de cómo se distribuyen las galaxias en el universo porque su área se limita a una zona con sobredensidad de galaxias con respecto a la media; la proximidad produce que las galaxias evolucionen más rápido, de modo que los estudios evolutivos generados con COSMOS tienen un carácter local", apunta Alberto Molino (IAA-CSIC).


Vendran más datos 

El proyecto ALHAMBRA, cuyo nombre responde a las siglas en inglésAdvanced Large, Homogeneous Area Medium Band Redshift Astronomical survey, dispone de un sistema de veinte filtros que cubren todas las longitudes de onda del óptico y de tres filtros en el infrarrojo, lo que permite determinar con gran precisión la energía emitida por las galaxias y la distancia de medio millón de galaxias con una profundidad sin precedentes para el tamaño de la muestra.

Esta primera publicación de datos constituye en torno a una quinta parte de los datos que ALHAMBRA suministrará a la comunidad internacional, lo que lo convertirá no solo en un proyecto de referencia en el estudio de las propiedades de las galaxias, sino que además servirá de propulsor para las futuras generaciones de cartografiados fotométricos como JPAS (proyecto español que extenderá el trabajo de ALHAMBRA a todo el cielo). 

ALHAMBRA es un proyecto liderado por Mariano Moles (Centro de Estudios de Física del Cosmos de Aragón), en el que participan más de setenta científicos de dieciséis instituciones de diferentes países. Se ha desarrollado en su totalidad desde el Observatorio de Calar Alto, a lo largo de trescientas cincuenta noches del telescopio de 3,5 metros entre los años 2005 y 2012 (tiempo garantizado español). Calar Alto ha demostrado ser una instalación de características privilegiadas para llevar a cabo estudios de primera línea como estos.

----------------------------------------------------------------------------------------------------------------------------------------------------------

3 - Descubren una galaxia del universo temprano con gran capacidad para formar estrellas

El hallazgo supone un desafío a las teorías actuales, que consideran que es imposible que un objeto así existiera tan pronto


Un estudio, con participación del Instituto de Astrofísica de Canarias, ha detectado la galaxia con formación estelar explosiva más distante conocida, que arrancó su producción cuando el universo era muy joven. Mientras la Vía Láctea crea una estrella al año, esta galaxia produce unas 3.000 estrellas en ese mismo periodo de tiempo. El hallazgo supone todo un desafío para las teorías que explican la formación y evolución de galaxias, que estiman que una galaxia de estas características no pudo existir tan pronto.



Al fondo, se aprecia una imagen obtenida a partir de las observaciones con el instrumento SPIRE de Herschel. Cada punto brillante es una galaxia distante con alta formación estelar. Fuente: ESA / Herschel / Hermes / IRAM / IAC / GTC / W.M. Keck Observatory.
Al fondo, se aprecia una imagen obtenida a partir de las observaciones con el instrumento SPIRE de Herschel. Cada punto brillante es una galaxia distante con alta formación estelar. Fuente: ESA / Herschel / Hermes / IRAM / IAC / GTC / W.M. Keck Observatory.
La Vía Láctea es capaz de formar una estrella al año, aproximadamente. La nueva galaxia que ha identificado un estudio, con participación del Instituto de Astrofísica de Canarias (IAC) y de la Universidad de La Laguna (ULL), ‘fabrica’ unas 3.000 en ese mismo periodo de tiempo. Lo significativo de esta nueva gigantesca factoría estelar es que se trata de la galaxia con formación estelar explosiva más distante conocida, que comenzó la producción masiva de estrellas cuando el universo era muy joven, con apenas un 6,5% de su edad actual. 

El hallazgo supone todo un desafío para las teorías que explican la formación y evolución de galaxias, que estiman que un objeto de estas características no puede existir tan pronto. La investigación, que se ha apoyado en observaciones del Gran Telescopio Canarias (GTC) aparece publicada en el último número de la revista Nature

En el universo, la luz viaja a través del tiempo. Un suceso –por ejemplo, la formación de una estrella- puede observarse desde la Tierra millones de años después de que ocurriera, debido a su distancia con respecto a nuestro planeta. La posibilidad de ver fenómenos ocurridos cuando el universo estaba prácticamente en pañales ha sido posible gracias a observatorios espaciales. Uno de ellos, el observatorio Herschel de la Agencia Espacial Europea, ha sido clave en esta investigación. 

A través de las observaciones obtenidas por la cámara SPIRE del mencionado observatorio, y dentro del proyecto Herschel Multi-tiered Extragalactic Survey (HerMES, en su acrónimo inglés), los investigadores detectaron una ‘mancha’ roja que despertó su curiosidad. Su extraña naturaleza quedó refrendada mediante observaciones posteriores con algunos de los mayores telescopios del mundo, incluidos el GTC y el Telescopio William Herschel (WHT), ambos ubicados en el Observatorio del Roque de los Muchachos del IAC en la isla de La Palma. Esta es la conclusión a la que llegaron los investigadores: HFLS3 es una enorme fábrica de estrellas en las que se transforma el polvo y el gas cósmico en nuevas estrellas. 

Otro dato que arroja el estudio es que se trata de la galaxia con formación estelar explosiva más distante conocida. “La luz que observamos ahora ha viajado por el universo unos trece mil millones de años. La vemos como era en el universo muy joven, casi recién formado, 880 millones de años después del Big Bang”, explica el investigador del IAC, y coautor del estudio, Ismael Pérez Fournon. en la nota de prensa del Instituto. 

Aunque tiene una masa similar a la de la Vía Láctea, su capacidad de producción estelar en un año es 3.000 veces superior. Con este ritmo, los investigadores concluyen que se convertirá rápidamente en una galaxia de masa similar a las galaxias más masivas conocidas en el universo actual.


Desafío a las teorías actuales 

Un objeto cósmico de estas características constituye un enigma. Según las teorías actuales de formación y evolución de galaxias, una galaxia tan masiva no debería existir en una etapa tan temprana del universo. La gran mayoría de las galaxias conocidas en esa época cósmica son mucho más pequeñas, menos pesadas -con masas de varios miles de millones la del Sol-, y forman sus primeras estrellas con ritmos varias veces el de la Vía Láctea en nuestros días, pero nunca al nivel de HFLS3. 

Las galaxias mayores y más pesadas, las que pueden generar cantidades de estrellas similares a HFLS3, surgen a partir de la fusión de galaxias pequeñas y a la atracción de gas frío del espacio. Por ello, encontrar el momento en que se formaron las galaxias más masivas “es crítico para confrontar y mejorar los modelos de formación de galaxias”, apunta Pérez Fournon. 

"La tarea de descubrir los primeros ejemplos de estas enormes factorías de estrellas es comparable a la de buscar una aguja en una pajar, los datos de Herschel son extremadamente ricos pero hay que observar estas galaxias con muchos otros telescopios y técnicas avanzadas para entenderlas bien" comenta el astrofísico del IAC y profesor de la Universidad de La Laguna, que ha dirigido al resto de integrantes del estudio de ambas instituciones: Antonio Cabrera Lavers, Paloma Martínez Navajas, Alina Streblyanska y Patrizia Ferrero. 

Una mancha muy roja 

De los cientos de miles de galaxias detectados en el proyecto HerMES de Herschel, "esta galaxia llamó nuestra atención porque es muy roja en comparación con otras en las tres bandas de observación del instrumento SPIRE", comenta Dominik Riechers, el investigador de la Universidad de Cornell (EEUU) que ha liderado el proyecto. 

Paloma Martínez Navajas, astrofísica residente del IAC, abunda en esta cuestión: "En este caso, el color rojo a longitudes de onda del infrarrojo lejano indica una distancia muy grande o, lo que es lo mismo, una edad muy pequeña del universo cuando la luz fue emitida hacia nosotros. Las observaciones que hemos realizado con algunos de los mayores y más avanzados telescopios del mundo han podido confirmar que HFLS3 es la galaxia con formación estelar masiva más distante conocida hasta la fecha". 

Con estas observaciones el grupo de investigadores que ha participado en este estudio, 64 investigadores de 32 centros de investigación, ha podido estimar un ritmo de formación de estrellas altísimo a partir del brillo observado en el infrarrojo y ha determinado las propiedades extremas de esta galaxia. En el universo actual no existen galaxias similares. 

El grupo del IAC, ULL y GTC ha contribuido al estudio de esta galaxia con observaciones en los telescopios GTC, WHT y con los radiotelescopios del Instituto de Radioastronomía Milimétrica (IRAM): el de 30 metros en Sierra Nevada (Granada) y el Interferómetro de Plateau de Bure (Francia). Antonio Cabrera Lavers, astrónomo del GTC, que realizó parte de las observaciones con el instrumento OSIRIS del Gran Telescopio, comenta que "estas observaciones se encuentran entre las más profundas obtenidas hasta la fecha con GTC y demuestran su potencial para este tipo de estudios".

-----------------------------------------------------------------------------------------------------------------------------------------------------------

4 - Un inusual encuentro entre dos galaxias origina una fábrica de estrellas

Este tipo de colisiones podría haber generado las primeras galaxias del Universo, sugieren datos del observatorio espacial Herschel


El observatorio espacial Herschel de la ESA ha observado un inusual encuentro entre dos galaxias ricas en gas que presenta la solución a un antiguo problema: cómo se formaron las grandes galaxias pasivas en el Universo primigenio. Durante mucho tiempo, se asumió que las grandes galaxias elípticas que vemos en el Universo se formaron lentamente, a través de la fusión gravitatoria de galaxias más pequeñas. Pero los hallazgos de la última década han revelado que en realidad las grandes galaxias elípticas se formaron en un plazo de tiempo muy corto en términos cosmológicos. La razón de esta velocidad de formación podría estar en estas fructíferas colisiones intergalácticas.


Imagen de la fusión de las galaxias. Fuente: ESA.
Imagen de la fusión de las galaxias. Fuente: ESA.
El observatorio espacial Herschel de la ESA ha observado un inusual encuentro entre dos galaxias ricas en gas que presenta la solución al antiguo problema de cómo se formaron las grandes galaxias pasivas en el Universo primigenio. 

La mayor parte de las grandes galaxias pertenece a una de estas dos categorías: las galaxias espirales, como nuestra Vía Láctea, con una gran cantidad de gas y actividad de formación de estrellas; o las galaxias elípticas, pobres en gas, pobladas de viejas estrellas rojas y frías y con pocos signos de actividad. Durante mucho tiempo se asumió que las grandes galaxias elípticas que vemos en el Universo actual se formaron lentamente a través de la fusión gravitatoria de galaxias más pequeñas. 

Esta hipótesis sugería que el gas contenido en estas galaxias se transformaría progresivamente en estrellas frías de baja masa, hasta agotar todas sus reservas, dejando una galaxia ‘roja y muerta’. 

Cuando en la última década se descubrió que las grandes galaxias elípticas se habían logrado formar en los primeros 3-4 mil millones de años de historia del Universo, esta hipótesis se tambaleó. De alguna forma, en un plazo de tiempo muy corto en términos cosmológicos, estas galaxias habían sido capaces de reunir rápidamente una gran cantidad de estrellas y luego se habían ‘apagado’. 

La fábrica de estrellas más eficiente 

Una posible explicación sería que dos galaxias espirales chocasen y se fusionasen, dando lugar a una gran galaxia elíptica. La colisión desencadenaría un brote masivo de formación estelar que agotaría rápidamente todas las reservas de gas. 

Gracias a las observaciones de Herschel, un equipo de astrónomos ha sido capaz de capturar el inicio de este proceso entre dos galaxias masivas cuando el Universo apenas tenía 3.000 millones de años. 

Esta pareja de galaxias fue identificada inicialmente en los datos de Herschel como una única fuente, bautizada como HXMM01. Un estudio más detallado desveló que en realidad se trataba de dos galaxias, cada una con una masa estelar equivalente a 100.000 veces nuestro Sol y con una cantidad equivalente de gas. 

Las galaxias están unidas por un puente de gas, lo que indica que se están fusionando. “Este monstruoso sistema de galaxias en interacción es la fábrica de estrellas más eficiente jamás detectada en el Universo primitivo, cuando éste apenas tenía 3.000 millones de años”, explica Hai Fui de la Universidad de California, Irvine, Estados Unidos, autor del estudio publicado en Nature, en un comunicado de la ESA. 

“El sistema HXMM01 es muy especial, no sólo por su gran masa e intensa actividad de formación de estrellas, sino porque también se encuentra en una fase intermedia y fundamental del proceso de fusión, lo que nos ayudará a perfeccionar los modelos actuales que describen la formación y la evolución de las galaxias”, añade Asantha Cooray, coautor de la publicación y también profesor en la Universidad de California, Irvine. 

El comienzo de la fusión ha desencadenado una frenética actividad de formación de estrellas, alcanzando una tasa equivalente a unas 2.000 estrellas como nuestro Sol al año. En comparación, una galaxia como la Vía Láctea actual sólo forma el equivalente a un Sol cada año. 

La eficiencia con la que el gas se está convirtiendo en nuevas estrellas en este sistema es unas diez veces mayor a la observada en las galaxias convencionales, que forman estrellas a una tasa mucho más lenta.


Cuando se acabe el gas, se termina la producción 

El sistema no será capaz de sostener semejante tasa de formación de estrellas durante mucho tiempo, y terminará agotando todas sus reservas de gas, deteniendo la producción y convirtiéndose en una población envejecida de estrellas rojas, frías y de baja masa. 

El equipo de Fu calcula que HXMM01 tardará unos 200 millones de años en convertir todo su gas en estrellas, mientras que el proceso de fusión tardará unos mil millones de años en completarse. El resultado final será una galaxia elíptica masiva, roja y muerta, con unos 400.000 millones de masas solares. 

“Tuvimos mucha suerte al detectar este sistema tan especial en una fase de transición tan crítica. El descubrimiento deja constancia de que la fusión de galaxias ricas en gas y con una considerable actividad de formación de estrellas es uno de los mecanismos para la formación de las galaxias elípticas masivas que podemos observar en el Universo primitivo”, explica Seb Oliver de la Universidad de Sussex, Reino Unido, Investigador Principal del Programa Clave HerMES dentro del que se han realizado estas observaciones. 

“Este descubrimiento pone de manifiesto la importancia de los estudios realizados con Herschel. En este caso, permitieron descubrir la excepcional fuente HXMM01, que puede contener la clave para desvelar el misterio de cómo se formaron y cómo han evolucionado las galaxias súper masivas cuando el Universo todavía era muy joven”, añade Göran Pilbratt, Científico del Proyecto Herschel para la ESA.

-------------------------------------------------------------------------------------------------------------------------------------------------------------

5 - Un cuásar ilumina a una galaxia devorando una nube de gas

Se trata de la mejor evidencia directa de que las galaxias se alimentan de material cercano para crecer y formar estrellas


Un grupo de astrónomos ha localizado una galaxia distante alimentándose de una nube de gas cercana, gracias a un cuásar aún más distante que ilumina la escena. Se trata de la mejor evidencia observacional directa obtenida hasta el momento para apoyar la teoría de que las galaxias atraen y devoran material cercano para crecer y formar estrellas.



Impresión artística de una galaxia acretando material de su entorno. Fuente: ESO.
Impresión artística de una galaxia acretando material de su entorno. Fuente: ESO.
Utilizando el telescopio VLT (Very Large Telescope) de ESO (Observatorio Austral Europeo), un equipo de astrónomos ha localizado una galaxia distante tomando un refrigerio de gas cercano. El gas parece estar cayendo hacia el interior de la galaxia, creando un flujo que alimenta la formación estelar al tiempo que impulsa la rotación de la galaxia. 

Es la mejor evidencia observacional directa obtenida hasta el momento para apoyar la teoría de que las galaxias atraen y devoran material cercano con el fin de crecer y formar estrellas. Los resultados aparecen en el número del 5 de julio de 2013 de la revista Science

Los astrónomos siempre han sospechado que las galaxias crecen atrayendo material de su alrededores, pero ha sido muy difícil observar directamente este proceso. El telescopio VLT (Very Large Telescope) de ESO ha sido utilizado para estudiar un extraño alineamiento entre una galaxia distante y un cuásar aún más distante: el núcleo extremadamente brillante de una galaxia alimentado por un agujero negro supermasivo. 

El cuásar del fondo se llama HE 2243-60 y la galaxia se encuentra a un desplazamiento al rojo de 2,3285 — lo cual significa que lo estamos viendo cuando el universo tenía una edad de tan solo unos dos mil millones de años. 

La luz del cuásar pasa a través del material que rodea a la galaxia (que se encuentra entre nosotros y el cuásar) antes de alcanzar la Tierra, haciendo posible que exploremos en detalle las propiedades del gas que se encuentra en torno a la galaxia. 

Cuando la luz del cuásar pasa a través de las nubes de gas, algunas longitudes de onda son absorbidas. Los patrones de estas huellas de absorción pueden revelar a los astrónomos mucha información sobre los movimientos y la composición química del gas. Sin el cuásar al fondo se habría obtenido mucha menos información: las nubes de gas no brillan y no son visibles en imágenes directas. 

Estos nuevos resultados nos ofrecen la mejor visión obtenida hasta el momento de una galaxia en pleno proceso de “ingesta”. “Este tipo de alineamiento es muy poco usual y nos ha permitido hacer observaciones únicas”, explica en la nota de prensa de ESO Nicolas Bouché, del Instituto de Investigación de Astrofísica y Planetología (IRAP) en Toulouse (Francia), autor principal del nuevo artículo. 

“Pudimos utilizar el telescopio VLT de ESO para mirar de cerca tanto la galaxia como el gas que la rodeaba. Esto significa que pudimos abordar un importante problema relacionado con la formación de las galaxias: ¿cómo crecen y cómo se alimenta la formación estelar?”. 

Las galaxias agotan rápidamente sus reservas de gas a medida que crean nuevas estrellas, por lo que deben ir reponiéndolo de manera continua con nuevo gas para poder continuar su actividad. La pregunta era ¿de dónde procedía ese gas? Los astrónomos sospechaban que la respuesta a este problema se encontraba en la recolección de gas frío de los alrededores por la atracción gravitatoria de la galaxia. 

Con este escenario, una galaxia arrastra el gas hacia ella y este circula alrededor de la misma, rotando con la galaxia antes de caer hacia su interior. Aunque ya se habían obtenido antes evidencias de este tipo de acreción(agregación de materia a un cuerpo), observado en algunas galaxias, hasta ahora no se habían estudiado a fondo tanto el movimiento del gas como otras de sus propiedades. 

Los astrónomos utilizaron dos instrumentos conocidos como SINFONI y UVES, ambos instalados en el telescopio VLT de ESO en el Observatorio Paranal, en el norte de Chile. SINFONI es un espectrógrafo de campo integral para observar en el infrarrojo cercano , mientras que UVES es un espectrógrafo Echelle para observar en el óptico y el ultravioleta. 

Las nuevas observaciones mostraron no solo cómo rotaba la galaxia, sino que también revelaron la composición y el movimiento del gas que se encontraba fuera de la misma. SINFONI reveló los movimientos del gas de la propia galaxia y UVES los efectos del gas que se encontraba en torno a la galaxia gracias a la información proporcionada por la luz proveniente del lejano cuásar.


Las propiedades 

“Las propiedades de esta ingente cantidad de gas eran exactamente lo que esperábamos encontrar en el caso de que el gas frío estuviera siendo atraído por la galaxia”, afirma el coautor Michael Murphy (Universidad Tecnológica de Swinburne, Melbourne, Australia). 

“El gas se mueve tal y como suponíamos, tenemos la cantidad esperada y también tiene la composición correcta para encajar perfectamente en los modelos. Imaginen la hora de la comida para los leones de un zoo — esta galaxia en particular tiene un apetito voraz, y hemos descubierto cómo se alimenta para crecer tan rápido”. 

Los astrónomos ya han encontrado evidencias de material alrededor de galaxias en el universo temprano, pero esta es la primera vez que han podido mostrar claramente que el material se mueve hacia la galaxia, en lugar de salir de ella, y también la primera vez que pueden determinar la composición de este “combustible” fresco destinado a formar nuevas generaciones de estrellas. La luz del cuásar ha hecho posible la detección del gas del entorno. 

“En este caso tuvimos suerte de que el cuásar estuviera justo en el lugar adecuado para que su luz pasara a través del gas que caía hacia la galaxia. La próxima generación de telescopios gigantes, como el E-ELT (European Extremely Large Telescope) permitirá estudios con multiples líneas de visión por galaxia y proporcionar una visión mucho más completa”, concluye la coautora Crystal Martin (Universidad de California Santa Barbara, EE.UU.).

-------------------------------------------------------------------------------------------------------------------------------------------------------

6 - ALMA localiza 100 galaxias del universo temprano en un tiempo récord

Ha permitido verlas a través del polvo cósmico que las oscurece


El telescopio ALMA (en Chile) está revolucionando el estudio del Universo. En solo unas horas, ha podido observar 100 de las galaxias con mayor formación estelar del universo temprano, tantas veces como el resto de telescopios de su especie en una década. Las longitudes de onda en las que se mueve ALMA permite ver estas galaxias a través del polvo cósmico que las oscurece. Hasta ahora, las galaxias estaban localizadas, pero los estallidos de formación estelar se veían como manchas inconcretas. Ahora cada estallido queda circunscrito a la galaxia que le corresponde.



En rojo, los estallidos de formación estelar, correspondientes a cada galaxia. Fuente: ESO.
En rojo, los estallidos de formación estelar, correspondientes a cada galaxia. Fuente: ESO.
Un equipo de astrónomos ha utilizado el nuevo conjunto ALMA de Chile, financiado en parte por el Observatorio Austral Europeo, (ESO), para localizar la ubicación de 100 de las galaxias con mayor formación estelar del universo temprano. 

ALMA es tan potente que, en solo unas horas, ha podido observar estas galaxias tantas veces como lo han hecho todos los telescopios de su tipo del mundo entero durante un periodo de más de una década. 

El estallido de nacimientos estelares más fértil del universo temprano tuvo lugar en galaxias distantes que contenían gran cantidad de polvo cósmico. Estas galaxias tienen una importancia clave para nuestro conocimiento de la formación y evolución de las galaxias a lo largo de la historia del Universo, pero el polvo las oscurece y hace difícil su identificación con telescopios de luz visible. Para lograrlo, los astrónomos deben utilizar telescopios que observen la luz en longitudes de onda más largas, en torno a un milímetro, como hace ALMA. 

“Los astrónomos han esperado este tipo de datos durante una década. ALMA es tan potente que ha revolucionado la forma en que observamos esas galaxias, incluso cuando el conjunto del telescopio aún no había terminado de completarse, como fue el caso de estas observaciones”, afirma en la nota de prensa de ESO Jacqueline Hodge (Instituto Max-Planck de Astronomía, Alemania), autora principal del artículo que presenta los resultados de ALMA.

El mejor mapa que se había hecho hasta el momento de esas polvorientas galaxias distantes se llevó a cabo utilizando el telescopio APEX (Atacama Pathfinder Experiment) operado por ESO. APEX llevó a cabo un sondeo de una parte del cielo del tamaño de la Luna llena, y detectó 126 galaxias de este tipo. Pero, en sus imágenes, cada estallido de formación estelar aparecía como una mancha más o menos difusa, tan amplia que cubría más de una galaxia (lo cual podía comprobarse estudiando imágenes más precisas tomadas en otras longitudes de onda). Al no saber exactamente cuál de esas galaxias estaba formando estrellas, los astrónomos veían obstaculizados sus estudios sobre formación estelar en el universo temprano. 

Antenas numerosas 

Localizar las galaxias correctas requiere de observaciones más precisas, y esas observaciones más precisas requieren, a su vez, de telescopios más grandes. Mientras que APEX cuenta con una única antena de 12 metros de diámetro, telescopios como ALMA usan numerosas antenas como la de APEX distribuidas en amplias superficies. Las señales de las antenas se combinan entre sí y se obtiene la información como si proviniera de un único telescopio gigantesco, tan ancho como todo el conjunto de antenas. 

El equipo utilizó ALMA para observar las galaxias del mapa obtenido por APEX durante la primera fase de observaciones científicas de ALMA, con el conjunto aún en fase de construcción. Utilizando menos de una cuarta parte del conjunto final de 66 antenas, distribuidas en distancias que superaban los 125 metros, ALMA necesitó tan solo dos minutos por galaxia para localizar a cada una de ellas en una diminuta región 200 veces más pequeña que la amplia mancha de APEX, y con una sensibilidad tres veces mayor. Si lo comparamos con otros telescopios de su tipo, ALMA es tan sensible que, en unas pocas horas, logró duplicar el total de observaciones realizadas por este tipo de telescopios. 

El equipo no solo pudo identificar inequívocamente qué galaxias tenían regiones activas de formación estelar, sino que, en más de la mitad de los casos, descubrieron que numerosas galaxias con formación estelar habían sido confundidas con una sola en observaciones previas. La precisa visión de ALMA les permitió distinguir y separar estas galaxias. 

“Antes pensábamos que las más brillantes de estas galaxias formaban estrellas con una intensidad miles de veces mayor que la de nuestra propia galaxia, la Vía Láctea, corriendo el riesgo de autodestruirse. Las imágenes de ALMA revelan múltiples galaxias, más pequeñas, formando estrellas en tasas más razonables”, afirma Alexander Karim (Universidad de Durham, Reino Unido), miembro del equipo y autor principal de un artículo paralelo a este trabajo. 


ALMA 

Los resultados conforman el primer catálogo estadístico fiable de galaxias polvorientas de formación estelar en el universo temprano, y proporcionan una base vital para futuras investigaciones de las propiedades de estas galaxias en diferentes longitudes de onda, sin riesgo de malas interpretaciones debido a que varias galaxias puedan aparecer como una sola. 

Pese a la precisa visión de ALMA y a su sensibilidad sin competencia, los telescopios como APEX aún tienen una importante misión. “APEX puede cubrir un área muy amplia del cielo más rápido que ALMA, por lo que resulta ideal para descubrir estas galaxias. Una vez que sabemos dónde mirar, podemos usar ALMA para ubicarlas con exactitud”, concluye Ian Smail (Universidad de Durham, Reino Unido), coautor del nuevo artículo. 

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una colaboración entre Europa, América del Norte y Asia Oriental en cooperación con Chile. La construcción y operaciones de ALMA en Europa están lideradas por ESO, que también participa en APEX. 

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de quince países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y Suiza.


-----------------------------------------------------------------------------------------------------------------------------------------------------------


7 - La cantidad de sodio en las estrellas condiciona el momento de su muerte

Algunos de estos cuerpos celestes se apagan antes de su explosión final, revelan las observaciones de ESO


Hasta ahora, se creía que las estrellas con una masa similar a la del Sol pasaban en sus últimos momentos por una explosión de su núcleo y una expulsión de gran parte de su masa hacia el exterior. Sin embargo, observaciones de un cúmulo estelar llevadas a cabo con el telescopio VLT del Observatorio Europeo Austral (ESO) han revelado que la mayor parte de las estrellas nunca alcanza esa fase. Para sorpresa de los astrónomos, la clave está en el sodio: sólo aquellos astros que contengan poca cantidad de este elemento llegarán a morir explotando.


El cúmulo globular de estrellas NGC 6752. Fuente: ESO.
El cúmulo globular de estrellas NGC 6752. Fuente: ESO.
Los astrónomos esperarían que estrellas como el Sol expulsasen la mayor parte de sus atmósferas al espacio durante la fase final de sus vidas. Pero nuevas observaciones de un enorme cúmulo estelar llevadas a cabo con el telescopio VLT (Very Large Telescope) del Observatorio Europeo Austral (ESO) han demostrado — contra todo pronóstico — que la mayor parte de las estrellas estudiadas sencillamente nunca alcanza esa fase. El equipo internacional ha descubierto que la mejor forma de predecir cómo acaban sus vidas es conociendo la cantidad de sodio de las estrellas. 

Durante mucho tiempo se pensó que la forma en que evolucionan y mueren las estrellas era un campo bien comprendido. Detallados modelos predecían que las estrellas con una masa similar a la del Sol tendrían un periodo, hacia el final de sus vidas — denominado de rama gigante asintótica o AGB — en el que pasaría por una explosión final del núcleo y gran parte de su masa sería expulsada en forma de gas y polvo hacia el exterior. 

Este material expelido forma después nuevas generaciones de estrellas y este ciclo de pérdida de masa y renacimiento es vital para explicar la evolución química del universo. Este proceso es a su vez el que proporciona el material requerido para la formación de planetas — e incluso los ingredientes para la vida orgánica. 

Pero cuando el experto australiano en teoría estelar Simon Campbell, del Centro de Astrofísica de la Universidad de Monash (Melbourne), revisó antiguos artículos, encontró abrumadoras evidencias que sugerían que algunas estrellas se saltaban estas reglas y obviaban por completo esta fase. 

“Para un científico que trabaja con modelos estelares ¡esta sugerencia era una locura! Según nuestros modelos, todas las estrellas pasan por la fase AGB. Revisé de nuevo todos los estudios antiguos, y descubrí que no había sido investigado adecuadamente. Decidí investigar por mi cuenta, a pesar de tener muy poca experiencia observacional”, señala Campbell en declaraciones recogidas en un comunicado de ESO.


Una dieta baja en sodio garantiza la longevidad estelar 

Campbell y su equipo utilizaron el telescopio VLT (Very Large Telescope) de este Observatorio para estudiar con mucho cuidado la luz proveniente de las estrellas ubicadas en el cúmulo globular de estrellas NGC 6752, en la constelación austral del Pavo. 

Esta inmensa bola de estrellas viejas contiene tanto estrellas de primera generación como estrellas de segunda generación que se formaron más tarde. Las dos generaciones pueden distinguirse por la cantidad de sodio que contienen — los datos de alta calidad obtenidos por el VLT permiten hacer estas medidas. 

“FLAMES, el espectrógrafo multiobjeto de alta resolución del VLT, era el único instrumento que podía permitirnos obtener datos de tan alta calidad para 130 estrellas al mismo tiempo. Y nos permitió observar gran parte del cúmulo globular de una vez”, añade Campbell. 

Los resultados fueron sorprendentes — todas las estrellas AGB del estudio eran de primera generación, con bajos niveles de sodio, y ninguna de las de segunda generación, con mayor cantidad de sodio, había pasado por la fase de estrella AGB. Un 70% de las estrellas no había pasado por la fase final de pérdida de masa y quemado del núcleo. 

“Parece que las estrellas necesitan tener una “dieta” baja en sodio para alcanzar la fase de AGB en su edad anciana. Estas observaciones son importantes por varios motivos. Estas estrellas son las más brillantes de los cúmulos globulares — por tanto habrá un 70% menos de estrellas brillantes de lo que predice la teoría. ¡Esto también significa que nuestros modelos de estrellas están incompletos y deben ser revisados!”, concluye Campbell. El equipo espera encontrar resultados parecidos para otros cúmulos de estrellas y tienen previsto llevar a cabo más observaciones.

----------------------------------------------------------------------------------------------------------------------------------------------------

8 - Descubren una estrella “cercana” con tres supertierras en zona de habitabilidad

El hallazgo sugiere que el número de planetas potencialmente habitables en nuestra galaxia es mucho mayor de lo se pensaba, afirman sus autores


Nuevas observaciones de la estrella Gliese 667C realizadas por ESO ha desvelado la existencia de un sistema con, al menos, seis planetas, situado “cerca” de la Tierra: a 22 años luz. Lo más sorprendente para los astrónomos es que tres de esos planetas son supertierras situadas en la zona que rodea a la estrella dentro de la cual podría haber agua líquida, convirtiéndolas en posibles candidatas para la presencia de vida.


Impresión artística del sistema Gliese 667C. Fuente: ESO.
Impresión artística del sistema Gliese 667C. Fuente: ESO.
Un equipo de astrónomos ha combinado nuevas observaciones de la estrella Gliese 667C con datos del instrumento HARPS, instalado en el telescopio de 3,6 metros de ESO, en Chile, para desvelar la existencia de un sistema con, al menos, seis planetas. 

Pero lo que rompe todos los récords en observaciones ha sido el hecho de que tres de esos planetas son supertierras situadas en la zona que rodea a la estrella dentro de la cual podría haber agua líquida, convirtiéndolas en posibles candidatas para la presencia de vida. Se trata del primer sistema encontrado con una zona habitable totalmente equipada, publica el Observatorio Austral Europeo en un comunicado

A 22 años luz de la Tierra 

Gliese 667C es una estrella muy estudiada. Con tan solo un tercio de la masa del Sol, forma parte de un sistema estelar triple conocido como Gliese 667 (también se le asigna el nombre de GJ 667), y se encuentra a 22 años luz de distancia, en la constelación de Scorpius (El Escorpión). 

Está bastante cerca de nosotros — en la vecindad solar —, mucho más cerca que otros sistemas estelares estudiados con otros telescopios, como el telescopio espacial Kepler, el cazador de planetas. 

Estudios anteriores sobre Gliese 667C revelaron que esta estrella alberga tres planetas y que uno de ellos se encuentra en la zona de habitabilidad. Ahora, un equipo de astrónomos liderado por Guillem Anglada-Escudé, de la Universidad de Göttingen (Alemania), y Mikko Tuomi, de la Universidad de Hertfordshire (Reino Unido), ha reexaminado el sistema, añadiendo a la información que ya se poseía nuevas observaciones llevadas a cabo por el instrumento HARPS y datos obtenidos por otros telescopios. 

Estos análisis han descubierto indicios de la existencia de más de siete planetas en torno a la estrella. Estos planetas orbitan a la tercera estrella más débil de un sistema estelar triple. Los otros dos soles se verían como un par de estrellas muy brillantes visibles durante el día y, durante la noche, proporcionarían una iluminación equivalente a la de la Luna llena. 

Los nuevos planetas llenan por completo la zona de habitabilidad de Gliese 667C, ya que no hay más órbitas estables en las cuales un planeta pudiera existir a la distancia adecuada. 

“Sabíamos, por estudios previos, que la estrella tenía tres planetas, y queríamos ver si podía tener alguno más”, afirma Tuomi. “Sumando algunas observaciones nuevas y revisando datos anteriores fuimos capaces de confirmar estos tres, con la confianza de encontrar alguno más. ¡Ha sido muy emocionante encontrar tres planetas de baja masa en la zona de habitabilidad de la estrella!”.


Supertierras en zona de habitabilidad 

Se ha confirmado que tres de esos planetas son supertierras — planetas más masivos que la Tierra, pero menos masivos que planetas como Urano o Neptuno — que se encuentran dentro de la zona de habitabilidad de su estrella, una limitada zona alrededor de la estrella en la cual el agua puede estar presente en forma líquida si las condiciones lo permiten. Se trata de la primera vez que tres planetas de este tipo se localizan orbitando esta zona al mismo tiempo . 

“El número de planetas potencialmente habitables en nuestra galaxia es mucho mayor de lo que podríamos pensar si tenemos en cuenta que podemos encontrar varios de ellos en torno a cada estrella de baja masa — en lugar de buscar diez estrellas para encontrar un único planeta potencialmente habitable, ahora sabemos que podemos buscar tan solo una estrella y encontrar varios planetas”, añade el coautor Rory Barnes (Universidad de Washington, EEUU). 

Se ha descubierto que los sistemas compactos alrededor de estrellas tipo Sol son abundantes en la Vía Láctea. En torno a dichas estrellas, los planetas que orbitan cerca de su estrella anfitriona son muy calientes y difícilmente podrían ser habitables. Pero no ocurre lo mismo con estrellas más frías y tenues como Gliese 667C. 

Un resultado emocionante 

En este caso la zona de habitabilidad se encuentra totalmente integrada en una órbita del tamaño de la de Mercurio, mucho más cerca de la estrella que en el caso de nuestro Sol. El sistema Gliese 667C es el primer ejemplo de un sistema en el que una estrella de baja masa alberga varios planetas potencialmente rocosos en la zona de habitabilidad. 

El científico de ESO responsable del instrumento HARPS, Gaspare Lo Curto, señala: “Este emocionante resultado fue posible en gran parte gracias a las capacidades de HARPS y su software asociado, y a su vez destaca el valor de los archivos de ESO. También es muy positivo ver cómo diversos grupos de investigación independientes explotan este instrumento único alcanzando una precision muy destacada”. 

Para finalizar, Anglada-Escudé concluye: “Estos nuevos resultados resaltan cuán valioso puede ser revisar los datos de este modo, combinando resultados de diferentes equipos o diferentes telescopios”.
-------------------------------------------------------------------------------------------------------------------------------------------------------------

9 - Primera imagen de una fábrica de cometas

ALMA fotografía la trampa de polvo que rodea a una joven estrella, de la que emergen diversos tipos de cuerpos rocosos


Un equipo de astrónomos ha conseguido obtener por vez primera una imagen clara de la trampa de polvo que rodea a una joven estrella, y partir de la cual se forman cometas, planetas y otros cuerpos rocosos. La fotografía, tomada con los telescopio ALMA de ESO, aclara cómo se forman estos cuerpos, una cuestión que hasta ahora había sido un misterio. Los resultados de modelos informáticos aplicados al hallazgo señala que los granos de polvo de dicha trampa crecen tras chocar y quedarse pegados, para dar lugar a estas formaciones.


Utilizando el nuevo conjunto de telescopios ALMA (Atacama Large Millimeter/submillimeter Array), un equipo de astrónomos ha conseguido obtener una imagen de la región que rodea a una joven estrella, en la que las partículas de polvo pueden crecer por acumulación. 

Esta es la primera vez que este tipo de trampa de polvo ha sido modelada y observada claramente y soluciona el eterno misterio sobre cómo las partículas de polvo en los discos crecen, alcanzando tamaños mayores, de manera que, finalmente, pueden formar cometas, planetas y otros cuerpos rocosos. Los resultados se han publicado en la revista Science

Los astrónomos saben que hay numerosos planetas alrededor de otras estrellas. Pero no terminan de comprender del todo cómo se forman y hay muchos aspectos de la formación de los cometas, planetas y otros cuerpos rocosos que siguen siendo un misterio. 

Sin embargo, utilizando el gran potencial de ALMA, se han llevado a cabo nuevas observaciones que ahora ofrecen respuestas a las grandes preguntas: ¿cómo pueden los diminutos granos de polvo del disco que rodea a estrellas jóvenes crecer y hacerse cada vez más grandes hasta, finalmente, convertirse en escombros, e incluso en rocas que bien pueden superar el metro de tamaño? 

Los modelos informáticos sugieren que los granos de polvo crecen tras chocar y quedarse pegados. Sin embargo, cuando estos granos de mayor tamaño chocan de nuevo a grandes velocidades, por lo general se rompen en pedazos y vuelven a su situación anterior. Incluso cuando esto no ocurre, los modelos muestran que los granos de mayor tamaño se moverían rápidamente hacia el interior debido a la fricción entre el polvo y el gas y caerían sobre su estrella anfitriona, sin darles la oportunidad de seguir creciendo. 

De algún modo, el polvo necesita un refugio seguro en el que las partículas puedan seguir creciendo hasta que sean lo suficientemente grades como para sobrevivir por sí solas [1]. Ya se había propuesto antes la existencia de estas “trampas de polvo”, pero hasta el momento no había pruebas observacionales.


La importancia de la trampa 

Nienke van der Marel (estudiante de doctorado de la Universidad de Leiden, en los Países Bajos, y autora principal del artículo), junto con sus colaboradores, utilizó ALMA para estudiar el disco en un sistema llamado Oph-IRS 48 [2]. Descubrieron que la estrella estaba circundada por un anillo de gas con un hueco central, probablemente creado por un planeta no visto o una estrella compañera. 

Observaciones anteriores realizadas con el telescopio VLT (Very Large Telescope) del Observatorio Europeo Austral (ESO) ya habían mostrado que las pequeñas partículas de polvo también formaban una estructura de anillo similar. Pero la nueva visión de ALMA del lugar en el que se encontraron partículas de polvo mayores que un milímetro ¡era muy diferente! 

“De entrada, la forma del polvo en la imagen fue una completa sorpresa”, afirma van der Marel en un comunicado del Observatorio. “En lugar del anillo que esperábamos ver, ¡descubrimos algo que claramente tenía forma de anacardo! Tuvimos que convencernos a nosotros mismos de que esa forma era real, pero la fuerte señal y la claridad de las observaciones de ALMA no dejaban lugar a dudas en cuanto a la estructura. Entonces nos dimos cuenta de lo que habíamos descubierto”. 

Lo que se ha descubierto es una región en la que los granos de polvo de mayor tamaño han sido atrapados y han podido crecer mucho más al chocar y quedarse pegados. Era una trampa de polvo (justo lo que andaban buscando los teóricos). 

Tal y como explica van der Marel: “Es probable que estemos observando una especie de factoría de cometas, ya que las condiciones son las adecuadas para que las partículas crezcan desde un tamaño milimétrico hasta un tamaño cometario. No es probable que el polvo forme planetas a esa distancia de la estrella. Pero en un futuro no muy lejano ALMA podrá observar esas trampas de polvo más cerca de la estrella anfitriona, en las que están en funcionamiento los mismos mecanismos. Este tipo de trampas de polvo sí serían la cuna de planetas recién nacidos”. 

La trampa de polvo se forma a medida que partículas de polvo de mayor tamaño se mueven hacia regiones de mayor presión. Los modelos informáticos muestran que estas regiones de alta presión pueden originarse a partir de movimientos del gas situado al extremo de un agujero de gas — justo como el que se ha encontrado en este disco. 

“La combinación de los trabajos de modelado junto con las observaciones de alta calidad de ALMA hacen de este un proyecto único”, afirma Cornelis Dullemond, del Instituto de Teoría Astrofísica, en Heidelberg (Alemania), experto en evolución del polvo y modelado de discos y miembro del equipo. “Cuando se llevaron a cabo estas observaciones estábamos trabajando en modelos que predecían exactamente este tipo de estructuras: una afortunada coincidencia”. 

Imagen tomada gracias a ALMA 

Las observaciones se llevaron a cabo cuando el conjunto ALMA aún estaba en construcción. Utilizaron los receptores de banda 9 de ALMA, unos dispositivos fabricados en Europa que permiten a ALMA crear las imágenes más nítidas que se han obtenido hasta el momento. 

“Estas observaciones demuestran que ALMA es capaz de proporcionar ciencia revolucionaria, incluso con menos de la mitad de las antenas en uso”, afirma Ewine van Dishoeck, del Observatorio de Leiden, que ha sido uno de los principales colaboradores del proyecto ALMA durante más de 20 años. 

“El increíble salto, tanto en sensibilidad como en nitidez, de las imágenes obtenidas en la banda 9, nos ofrece la oportunidad de estudiar aspectos básicos de la formación planetaria de maneras que, sencillamente, antes no eran posibles”.
-------------------------------------------------------------------------------------------------------------------------------------------------

Star Wars 7 

Analistas de Wall Street aseguran que la nueva entrega de la saga galáctica se posicionará entre las cintas más taquilleras de la historia.

Star Wars



No hay comentarios:

Publicar un comentario